Sains Malaysiana 53(3)(2024): 623-633

http://doi.org/10.17576/jsm-2024-5303-11

 

Twenty Years of Air Pollutant Index Trend Analysis in Kuching, Sarawak, Malaysia (2000-2019)

(20 Tahun Analisis Trend Indeks Pencemaran Udara di Kuching, Sarawak, Malaysia (2000-2019))

 

SITI HASYYATI DRAHMAN, HISYAMMUDIN MASERI*, MAQUELINE CYNDI NAP & ZETTY BAIDURI HOSSEN

 

Faculty of Engineering and Technology, i-CATS University College, 93350 Kuching, Sarawak, Malaysia

 

Received: 24 September 2023/Accepted: 16 February 2024

 

Abstract

Sarawak is expected to face environmental challenges due to air pollution arising from industrial emissions and urbanisation as it strives towards achieving developed and high-income status by 2030. Therefore, it is important to conduct a comprehensive Air Pollutant Index (API) trend analysis. There are currently limited studies on API trend analysis that focus on Kuching, the capital known for its extensive industrial zones and densely populated urban centre. The main focus of this study was to perform a comprehensive analysis of the API trends in the Kuching region over a period of 20 years (2000-2019) using a visual representation in the form of a contour plot. To achieve this purpose, a five-term Fourier model was employed to predict the missing API data using Matlab software. Then, a complete version of a contour plot was developed to clearly illustrate the fluctuations in air quality over time. It was found that a five-term Fourier model used to forecast missing API data provides a strong correlation with the API readings, with most of the R values greater than 0.91. Moreover, the generated contour plot demonstrates a visual congruence between the forecasted data and the original dataset. Elevated API readings, signifying highly detrimental air quality, were primarily identified as a result of haze episodes stemming from uncontrolled fires in neighbouring countries, particularly during El Niño events. The findings of this study contribute to a better understanding of API trends in Kuching by means of the contour plot.

 

Keywords: Air Pollutant Index; contour plot; five-term Fourier model; Kuching; trend analysis

 

Abstrak

Sarawak dijangka menghadapi cabaran alam sekitar disebabkan oleh pencemaran udara yang berpunca daripada pelepasan industri dan perbandaran, seiring dengan usahanya untuk mencapai status maju dan berpendapatan tinggi menjelang tahun 2030. Oleh itu, adalah penting untuk menjalankan analisis arah aliran Indeks Pencemaran Udara (IPU) yang komprehensif. Kajian mengenai analisis arah aliran IPU yang tertumpu kepada Kuching, ibu negeri yang terkenal dengan zon perindustrian yang luas dan pusat bandar yang padat, masih terhad pada masa kini. Fokus utama kajian ini adalah untuk menjalankan analisis menyeluruh terhadap arah aliran IPU di kawasan Kuching dalam tempoh 20 tahun (2000-2019) dengan menggunakan penggambaran visual dalam bentuk plot kontur. Bagi mencapai tujuan ini, model Fourier lima-terma digunakan untuk meramalkan data IPU yang hilang dengan menggunakan perisian Matlab. Kemudian, plot kontur versi lengkap dibangunkan untuk menggambarkan dengan jelas perubahan dalam kualiti udara sepanjang masa. Didapati bahawa model Fourier lima-terma yang digunakan untuk meramalkan data IPU yang hilang memberikan korelasi yang kuat dengan bacaan IPU, dengan kebanyakan nilai R melebihi 0.91. Selain itu, plot kontur yang dihasilkan menunjukkan keselarasan visual antara data yang diramalkan dan dataset asal. Bacaan IPU yang tinggi menunjukkan kualiti udara yang sangat buruk, terutamanya dikenal pasti sebagai hasil daripada episod jerebu yang berpunca daripada kebakaran tanpa kawalan di negara-negara jiran, terutamanya semasa peristiwa El Niño. Penemuan kajian ini menyumbang kepada pemahaman yang lebih baik mengenai arah aliran IPU di Kuching melalui plot kontur.

Kata kunci: Analisis arah aliran; Indeks Pencemaran Udara; Kuching; model Fourier lima-terma; plot kontur

 

REFERENCES

Abd Rahman, N.H. & Lee, M.H. 2020. Air pollutant index calendar-based graphics for visualizing trends profiling and analysis. Sains Malaysiana 49(1): 201-209.

Abd Rahman, N.H., Lee, M.H., Suhartono & Latif, M.T. 2016. Evaluation performance of time series approach for forecasting air pollution index in Johor, Malaysia. Sains Malaysiana 45(11): 1625-1633.

Abd Rani, N.L., Azid, A., Khalit, S.I., Juahir, H. & Samsudin, M.S. 2018. Air pollution index trend analysis in Malaysia, 2010-15. Polish Journal of Environmental Studies 27(2): 801-807.

Abdullah, A.M., Abu Samah, M.A. & Jun, T.Y. 2012. An overview of the air pollution trend in Klang Valley, Malaysia. Open Environmental Sciences 6(1): 13-19.

Chooi, Y.H. & Yong, E.L. 2016. The influence of PM2.5 and PM10 on air pollution index (API). Environmental Engineering, Hydraulics and Hydrology: Proceeding of Civil Engineering. 3: 132-143. Johor: Universiti Teknologi Malaysia.

Department of Environment Malaysia. 2022a. Air Pollutant Index (API). https://www.doe.gov.my/en/2021/10/26/english-air-pollutant-index-api-2/ Accessed on 30 July 2023.

Department of Environment Malaysia. 2022b. Air Pollutant Index (API) Calculation. http://apims.doe.gov.my/pdf/API_Calculation_latest.pdf  Accessed on 30 July 2023.

Department of Environment Malaysia. 2022c. Air Quality Monitoring Station in Malaysia. https://www.doe.gov.my/en/air-quality-monitoring-station-in-malaysia/ Accessed on 30 July 2023.

Department of Environment Malaysia. 2021. Chronology of Haze Episodes in Malaysia. https://www.doe.gov.my/en/2021/10/26/chronology-of-haze-episodes-in-malaysia-2/ Accessed on 26 July 2023.

Department of Environment Malaysia. 2000. A Guide to Air Pollutant Index (API) in Malaysia. 4th ed. Kuala Lumpur: Department of Environment, Ministry of Science, Technology and Environment.

Goddard, L. & Gershunov, A. 2020. Impact of El Niño on weather and climate extremes. In El Niño Southern Oscillation in a Changing Climate, edited by McPhaden, M.J., Santoso, A. & Cai, W. New Jersey: John Wiley & Sons, Inc. pp. 361-375.

Isiyaka, H.A. & Azid, A. 2015. Air quality pattern assessment in Malaysia using multivariate techniques. Malaysian Journal of Analytical Sciences 19(5): 966-978.

Islam, M.S., Pei, Y.H. & Mangharam, S. 2016. Trans-boundary haze pollution in Southeast Asia: Sustainability through plural environmental governance. Sustainability 8(5): 499.

Khan, M.F., Hamid, A.H., Rahim, H.A., Maulud, K.N.A., Latif, M.T., Nadzir, M.S.M., Sahani, M., Qin, K., Kumar, P., Varkkey, H., Faruque, M.R.I., Guan, N.C., Ahmadi, S.P. & Yusoff, S. 2020. El Niño driven haze over the Southern Malaysian Peninsula and Borneo. Science of the Total Environment 730: 139091.

Koo, J.W., Wong, S.W., Selvachandran, G., Long, H.V. & Son, L.H. 2020. Prediction of Air Pollution Index in Kuala Lumpur using fuzzy time series and statistical models. Air Quality, Atmosphere and Health 13: 77-88.

Koplitz, S.N., Mickley, L.J., Marlier, M.E., Buonocore, J.J., Kim, P.S., Liu, T., Sulprizio, M.P., DeFries, R.S., Jacob, D.J., Schwartz, J., Pongsiri, M. & Myers, S.S. 2016. Public health impacts of the severe haze in Equatorial Asia in September-October 2015: Demonstration of a new framework for informing fire management strategies to reduce downwind smoke exposure. Environmental Research Letters 11(9): 094023.

Piaw, C.Y. 2013. Mastering Research Statistic. Malaysia: McGraw Hill Education.

Quah, E. & Varkkey, H. 2013. The political economy of transboundary pollution: Mitigation forest fires and haze in Southeast Asia. In The Asian Community: Its Concepts and Prospects, edited by Hayashihana, S. Soso Sha, Tokyo, Japan. pp. 323-358.

Rahman, S.R.A., Ismail, S.N.S., Ramli, M.F., Latif, M.T., Abidin, E.Z. & Praveena, S.M.  2015. The assessment of ambient air pollution trend in Klang Valley, Malaysia. World Environment 5(1): 1-11.

Shi, W., Wong, M.S., Wang, J. & Zhao, Y. 2012. Analysis of airborne particulate matter (PM2.5) over Hong Kong using remote sensing and GIS. Sensors 12(6): 6825-6836.

Sofiyuddin, M., Suyanto, S., Kadir, S. & Dewi, S. 2021. Sustainable land preparation for farmer-managed lowland agriculture in Indonesia. Forest Policy and Economics 130: 102534.

Sulong, N.A., Latif, M.T., Khan, M.F., Amil, N., Ashfold, M.J., Wahab, M.I.A., Chan, K.M. & Sahani, M. 2017. Source apportionment and health risk assessment among specific age groups during haze and non-haze episodes in Kuala Lumpur, Malaysia. Science of the Total Environment 601-602: 556-570.

Suris, F.N.A., Abu Bakar, M.A., Mohd Ariff, N., Mohd Nadzir, M.S. & Ibrahim, K. 2022. Malaysia PM10 air quality time series clustering based on dynamic time warping. Atmosphere 13: 503.

Thangavel, P., Park, D. & Lee, Y.C. 2022. Recent insights into particulate matter (PM2.5)-mediated toxicity in humans: An overview. International Journal of Environmental Research and Public Health 19(12): 7511.

The Official Portal of the Sarawak Government. 2023. Sarawak Population. https://sarawak.gov.my/web/home/article_view/240/175/ Accessed on 20 August 2023.

U.S. Environmental Protection Agency. 2022. Air data basic information. https://www.epa.gov/outdoor-air-quality-data/air-data-basic-information Accessed on 25 July 2023.

Zakaria, U.A., Saudi, A.S.M., Abu, I.F., Azid, A., Balakrishnan, A., Amin, N.A. & Rizman, Z.I. 2018. The assessment of ambient air pollution pattern in Shah Alam, Selangor, Malaysia. Journal of Fundamental and Applied Sciences 9(4S): 772.

 

*Corresponding author; email: hisyammudinmaseri@icats.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous